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ABSTRACT 

We study the renormalization of the QCD vacuum parameter 6 which arises 

from CP violation in the weak interactions. In the Kobayashi-Maskawa extension 

of the Weinberg-Salam model to include six quarks the first renormalization of 0 

occurs in O(cx*) and is apparently 0(10-16 1. If we assume that @ = 0 at some 

unknown “relaxation” scale p o, this renormalization makes a contribution to the 

neutron electric dipole moment which is probably 0(10-31 to 10m3*) cm and smaller 

than the purely perturbative contribution. Infinite renormalization of 0 may first 

occur in O(a7), and we isolate a topological class of diagrams of this order which do 

indeed require infinite renormalization of 8. For any reasonable choice of the 

relaxation scale po, the residual finite 8 renormalization is much smaller than the 

first finite O(ct*) contribution. We finish with some remarks about 0 renormali- 

zation in other weak interaction models of CP violation. 
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1. INTRODUCTION 

It used to be thought that QCD automatically possessed C, P and T invariance.’ 

This was very fortunate, since the experimental limits on the intrinsic violation of 

these symmetries by the strong interactions are very stringent. But now instantons 

have been discovered,* and it has been pointed out that the QCD vacuum must have 

a non-trivial topological structure. 3 The actual vacuum requires an angle 

parameter 8 for its characterization, and QCD violates CP invariance if 8 f 0. The 

best limit on CP violation by the strong interactions comes from the experimental 

upper limit on the neutron electric dipole moment. Taking this to be 3 x 1O-24 cm4 

and using a recent estimate5 that in QCD the dipole moment is O(4 x IO-l6 a)cm, 

one feels the need to have 0 <O(1O-8). It is therefore very desirable to find within 

the QCD framework a natural reason either why 8 = 0 exactly, or else why 8 is 

very small. 

Peccei and Quinn6 pointed out one way of getting e = 0 automatically, by 

imposing a new global chiral U(I) symmetry (to be called U(l)PQ) on the QCD 

Lagrangian. Invariance under the associated chiral transformation can be used to 

demonstrate the equivalence of theories with different values of 8, which therefore 

presumably conserve CP as if 8 = 0. How to realize a U(lJpQ symmetry? One 

possibility would be that some quark, least unlikely to be the u, has zero bare mass. 

While not rigorously excluded phenomenologically, this solution has difficulty in 

fitting the observed pi, K and baryon masses. 798 Another way of realizing a U(l)pQ 

symmetry which was proposed by Peccei and Quinn 6 involved choosing a non- 

minimal system of Higgs multiplets to give quark masses, with their couplings 

constrained to possess the required chiral symmetry. It was pointed out by 

Weinberg’ and Wilczek” that this Peccei-Quinn model featured a very light 

pseudoscalar physical Higgs particle, called the axion a. In the simplest type of 

model the axion mass would probably be O(lO0 to 1000) MeV, and such a light axion 
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now seems to be excluded experimentally. For example, high energy beam dump 

experiments” could produce the axion through its mixing with the # and n, whose 

production cross-sections are reasonably well-known. The constraints on a - 11’ and 

a - n mixing in the simplest model give a lower bound 12 for the production and 

interaction of the axion which is 

u (P + p + a + X) o(a + p + X) 2 0(10-65) cm4 (1.1) 

This is about two orders of magnitude higher than the experimental upper 

limit11,13,14 of 0(10-67) cm4 which would apply to axions with masses -< 2 MeV. A 

light axion could also be copiously produced by nuclear reactors,’ and could 

generate deuterium break-up reactions (a + D + n + p) or undergo “compton” 

scattering (a + e + y + e), neither of which have been seen. Unfortunately, 

theoretical calculations of the rate of axion production in nuclear reactions are not 

totally reliable. 9,14 Therefore, these negative observations are not conclusive, 

although they fuel our intuition that the axion does not exist, at least in the simple 

form originally proposed. 

Regardless of the phenomenological situation, it is theoretically desirable to 

study alternative ways of keeping CP violation by the strong interactions within 

acceptable limits. A general way of doing this is to find a theory in which 0 = 0 

naturally as a zeroth order approximation, but may get renormalized by a finite and 

small amount when higher order, weak/electromagnetic effects are taken into 

account. This can be done in the context of weak gauge groups which are more 

extensiveI than the minimal Weinberg-Salam model. 16 In view of this 

SU(2) x U(1) model’s phenomenological success when compared with almost all 

experiments17’18 except some in atomic physics 19 whose interpretation is cloudy, 

we will discard models not based on a SU(2) x U(1) gauge group. In this case the 
- 
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only degrees of freedom are in the representations and couplings of fermions and 

Higgs particles. In view of phenomenology and the natural flavor conservation 

conditions,20 we will assume that all left-handed quarks and leptons are in 

doublets, and all right-handed quarks and leptons singlets as in the usual Weinberg- 

Salam model. In view of the success17 of the I : t4 Higgs rule for the strength of 

neutral current reactions, we will only use I = y2 Higgs multiplets. But how many 

quark doublets (ND) and how many Higgs multiplets (NH)? With ND ~3, as now 

seen experimentally, Kobayashi and Maskawa *I pointed out that CP violation can 

be introduced into the weak coupling matrix U of the Weinberg-Salam model, and 

this needs only one Higgs multiplet. ** There are models with NH > I where Higgs 

exchanges are the dominant source of CP violation. One of these23 turns out to 

have an unacceptably large renormalization of 8. AnotherZ4 has an amount of B 

renormalization which is on the borderline of acceptability, and which is also on the 

borderline as far as Higgs exchange contributions to AS= 2 transitions are 

concerned. In this paper we are mainly concerned with 8 renormalization in the 

Kobayashi-Maskawa’l (KM) extension of the Weinberg-Salam model to include CP 

violation with 6 quarks and just one Higgs multiplet. *’ Our results can easily be 

extended if there are more than six quarks, and we will indicate where our analysis 

would be modified. 

This model has the unattractive feature that no good rationale is known for 

setting t3 = 0 in any approximation. Furthermore, because CP is violated by 

dimension 4 terms in the Lagrangian, the renormalization of 8 is expected to be 

infinite. We have nothing useful to say about the first of these problems. Instead, 

we analyze the amount of tl renormalization in the KM model assuming 0 is fixed 

to have some value e. probably go = 0, when the theory is renormalized at some 

“relaxation” scale uo. This analysis gives some idea of the order of magnitude of B 

to be expected in this model, if some “vacuum relaxation” mechanism could be 
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found.8 Our objectives are twofold: to ascertain in what order of weak and 

electromagnetic perturbation b renormalization first occurs and how big it is, and 

to pinpoint the order of weak and electromagnetic perturbation in which an infinite 

renormalization first occurs. 

In a free quark model, the renormalization of f3 in the KM model would first 

occur in 6th order. However, when perturbative QCD effects are taken into 

account there is a first finite renormalization in 4th order of magnitude 

Ae = 0 5 * ( s’s s sin 6)O 4 11 123 (1.2) 

If there are just 6 quarks, the heaviest masses appearing in (1.2) can be ms2mc2, so 

we would guess that (1.2) yields 

Ae = 0(10-‘5 (1.3) 

Note however that if there are two more heavy quarks with mixing angles 

comparable to those for lighter quarks then one could have mb * mt * in (1.2) and 

Ae = O(10-12). When combined with Baluni’s estimate5 of the magnitude of the 

neutron electric dipole moment for a given value of 8, the estimate (1.3) suggests a 

contribution to the dipole moment of the general order 10 -31 to 10 -32 cm (1O-27 to 

10-28 cm if there were two quarks with mass >m t b). This is much smaller than the 
f 

present experimental limit,” and is smaller than the purely perturbative contribu- 

tion in this model of CP violation. 25 We find a first (logarithmically) divergent 

contribution to e renormalization in 14th order O(a’). We exhibit a class of 

diagrams of O(07) with a topology which permits an infinite renormalization of e , 

and demonstrate that the divergence is not cancelled when all these diagrams are 

added together. We cannot exclude the possibility that this divergence is cancelled 

- 
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by diagrams with some other topology, but we can argue that no divergence occurs 

before O(a7), and see no reason why divergent contributions to 0 should be totally 

absent. If we take the “relaxation”’ scale u. to be less than exp(O(10J8J) GeV, the 

residual finite renormalization of 8 from these diagrams is less than the finite A8 

of equation (1.21, when 8 is measured on the scale of the proton as in the neutron 

electric dipole moment. For plausible choices of the “relaxation” scale u. less than 

the Planck mass = O(10”) CeV, the “infinite” contribution to A6 is totally 

negligible. 

Section 2 of this paper sets out a general formalism for calculating 8 renor- 

malization, including a renormalization group approach for regarding 0 as an 

effective coupling constant 26 and calculating its value away from the “relaxation” 

scale p,. Section 3 looks at 8 renormalization in low orders of weak and 

electromagnetic perturbation. It establishes that 9 renormalization in the KM 

model indeed starts in O(a2), whereas a free quark approximation neglecting 

perturbative QCD corrections would have suggested O(a3). Section 4 develops the 

argument that an infinite renormalization of 8 first occurs in O(a7J. It also exhibits 

a topological class of diagrams of this order whose logarithmic divergences in the 

manifestly renormalizable ‘t Hooft-Feynman gaugez’ do not cancel. The numerical 

significance of this infinite renormalization is discussed. Section 5 makes some 

remarks about alternatives to the KM model, 21,22 such as modeJs23y24 with 

multiple Higgs, and grand unified models of the strong, weak and electromagnetic 

interactions.28 It concludes with some comments about the state of the art of CP 

violation. 

- 
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2. GENERAL FORMALISM 

As mentioned in the introduction, we will not address the question of 

specifying 8 in the KM model. 21,22 We restrict ourselves to discussing its 

renormalization. We further restrict our analysis to the B renormalization 

resulting from the necessity of redefining the quark mass matrix at each order in 

weak/electromagnetic perturbation theory.9 If any other source of 0 renormali- 

zation exists,J’ . . . It IS likely to have similar structure in the CP violating weak 

couplings, and its contribution to 0 will hopefully not change the order of 

magnitude estimates we wiJJ present in this paper. 

We write the inverse quark propagator as 

S;‘(p) q $-M (2.1) 

with M the real and diagonal quark mass matrix at zeroth order in weak/electro- 

magnetic perturbation theory. We define by Z(p) the sum of irreducible weak/eJec- 

tromagnetic diagram contributions to the quark propagator. It has the Dirac 

decomposition 

Z(p) = AfiL+B$R+MCL+DMR (2.2) 

where hermiticity imposes the constraints 

A = A+ , B I B+ , C = D+ (2.3) 

Combining (2.1) and (2.2) we see that the full inverse quark propagator has the form 
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S-‘(p) = p- M - C(p) 

= b (I - AIL + p (I - B)R-&IC(l.C)L-(I + C +)MR . (2.4) 

Ren 4J, :&+JL , $lR =+rpp (2.5) 

(2.6) 

The expression (2.4) must be subjected to wave function renormalizations 

which yieid the renormalized propagator 

SRen-J(p) = p L + fi R -&M(K) & L 

--& (1 + C+)Mhg R 

The renormalized quark mass matrix MRen is therefore just 

MRen 
=A tMM(l+c)+~ L (2.7) 

One now makes MRen (2.7) real and diagonal by unitary transformations on the left- 

and right-handed quark fields 

Ren’ 
6, 

Ren = V~“L 3 
Ren’ 

+R 
Ren = V$LR (2.7) 

so that 

MRen = ,,+#entV 
R’ L 

(2.8) 
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In this case one makes a net chiraJ transformation through a net angle 

60 = arg det VR +V L 

= arg det M Ren 
(2.9) 

because the final renormalized quark mass matrix ~MRen’ is by definition real and 

diagonal. As pointed out by Weinberg,’ the chiral transformation (2.9) causes a 

corresponding renormalization of the CP violating QCD vacuum parameter 3, 

Referring back to equation (2.7) and recalling (2.3) that A and B are hermitian 

matrices, we condude that 

68 = arg det (1 + CJ 

= Jm Tr In (1 + Cl 

= Im Tr C + . . . (2.10) 

Equation (2.10) summarizes the renormalization of 0 in terms of the weak/electro- 

magnetic perturbations (2.2) on the quark propagator. 

So far we have not specified the prescription to be used for renormalizing the 

quark propagator. In weak/electromagnetic calculations it is common to renor- 

maJize on mass-shell. However, since we are interested in the purely strong 

interaction parameter 8, it is convenient to renormalize at an off-shell Eudidean 

momentum p2 = -u2, as is usually done in QCD calculations. We therefore specify 

the quark propagator and mass renormalization (2.6, 2.7, 2.8) by 
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@en-J(p) 
I 

= p L + ~5 R - MRen’(u)(L + RJ , 
p2 = -$ 

(2.11) 

Corresponding to this choice of renormalization prescription we have a renormaliza- 

tion group equation 

mq( 
IJ 

; a,“qo 
mZ,W,H 

I (2.12) 

just as one would have if e were regarded as an effective coupling constant. 26 The 

function Be will be expanded as a power series in a, and has of course no zeroth 

order term, because the strong interactions by themselves do not renormalize 8. We 

therefore have 

. (2.13) 

Our philosophy will be to assume that some external power as yet unknown 

constrains e to take some specific value e. at some scale uo. Presumably the 

constraint is B. = 0, perhaps corresponding to some sort of “vacuum relaxation,“8 

though there seems to be no way of deducing this within the KM-QCD framework. 

We do not know the scale p o at which 8 is fixed, but presume it to be somewhere 

between a typical weak scale O(100) GeV, and the Planck mass O(10J9) GeV, which 

is the largest fundamental mass scale known to us. Perhaps u, has something to do 

with the scale of grand unification of the strong, weak and electromagnetic 

interactions which may 28 be O(10J5 to IO15 GeV? 

The best constraint on 0 comes from the neutron electric dipole Jimit,l) which 

applies to the value of 0 on a typical strong interaction scale s J CeV: 
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e (IJ q I GeV) < 1o-8 (2.14) 

Our task will be to see whether the renormalizations B 
e 

” of equation (2.13) are 

sufficiently small in the KM model that the constraint (2.141 is satisfied whatever 

the scale u. at which 0 = 0. We should observe at the outset that in the KM 

mode12l922 CP is violated by the “hard” dimension 4 qq-Higgs couplings, so that we 

would expect some diagrams to make divergent contributions to 8. They will 

however only make finite contributions to B, , and will therefore make a 

contribution to 0 (I GeV) which is proportional to In (u,/l GeV). This logarithm will 

not be too large (c I/a) if uo( the Planck mass. We therefore feel that the 

presence of divergent contributions to tl renormalization in the KM is no more 

serious than its inability to predict 0 in the first place. 

3. LOW ORDER CONTRIBUTIONS TO 8 RENORMALIZATION 

In the following section we shall show using a manifestly renormalizable 

ww 
27 that a divergent contribution to A0 first appears in 14th order. For 

studying lower order finite contributions it is more convenient 25 to use the unitary 

gauge wherecharged boson exchange projects out left-handed quarks so that any 

quark running between two W-vertices has as propagator p (p2 - m2)-‘. In sec. 3.1 

we first estimate the weak-electromagnetic contribution to A0 neglecting strong 

interaction corrections. In Sec. 3.2 we turn to strong interaction effects which alter 

substantially the order of magnitude of the estimate. 

3.1. Free quarks 

As discussed in section 2, we must calculate the helicity-flip contribution to 

the self energy, and evaluate the quantity 



-12- FERMILAB-Pub-78/66-THY 

Ae = lm Tr In(l+C) = Im C - $ Tr C2 + $ Tr C3 + . . . 1 (3.1) 

where C is the matrix defined in Eq. (2.2). It is generally a polynomial in the 

Cabibbo matrix U and its hermitian conjugate. Since W’ emission is necessarily 

followed by WT emission, the general form of C is, for, say external (charge -l/3) 

catho-quarks, 29 

c =a”J d4nk N t 
t211J4n ” Fib& k)U F; (a, kKJ (3.2) 

where N <n is the number of W-loops and fl (M) is the (diagonal) mass matrices for 

ano (catho) quarks. In order to get an imaginary contribution to Tr Cp, Cp must 

contain at least two W-loops since 

U l aBf(mg)uaSf(moI (3.3) 

is real. In addition, since C is a left-right transition operator, we cannot have a W 

attached to the outcoming quark line. Thus the only possible contributions are 

those of fig. I, where the dotted line can be attached anywhere along the quark 

line. The lowest order non-vanishing contribution to (3.1) is therefore of order a3, 

and will be of the form 

/J= a 
0 

3 
Im (u* u 

a8 y~““y6ua,)f(m,r mu; mg, m,) . (3.3) 

The expression (3.3) vanishes for 6 = 6, so we may write: 

c 



-13- FERMILAB-Pub-78/66-THY 

Im (u* u u* u al yl y2 a2 )[f(ma, my; ml, m,) -(ml++ m,N 

+ cyclic permutations (1, 2, 3) 

if we have 3 quark doublets. Finally we may use unitarity: 

* 
‘a3” y3 = 6 

cry 
-U*dua2 - “*&ual 

to write 

Ae3= i 
0 

3 
Im (u* u u* al yl y2Ua2) [ifha, my; ml, m,) -(ml *m2)j 

+ cyclic permutations Cm,, m2, m,) 1 (3.4) 

A similar antisymmetrization holds in a and y. In order to get a non-vanishing 

result we require three propagator subtractions for each quark charge. This 

renders the Feynman integrals so highly convergent rhat the longitudinal parts of W 

propagators are scaled by quark masses 

kk 2 
II+mq 

2 
mW mW 

2 

and each W-loop is scaled by the W-mass: 

(p2 - mW2) -I + mWe2 

t 

The manifest order of magnitude of diagrams in Fig. I is therefore 
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Ae3 ji (:) ‘(27 x [~~~~~$,~2] for [i] exchange . (3.5) 

On closer inspection however, one sees that the antisymmetrization (3.4) requires 

further subtractions in the W-propagators so that the y- and Z-exchange diagrams 

are reduced by an additional factor (mq/mWJ4. We shall study these diagrams in 

some detail. 

If Cn is the order a n contribution to C, we have 

3 
3 

. (3.6) 

In the unitary gauge Cl and C2 get no contribution from charged W’s. The 

diagrams of Figs. 2(a) and (b) give 

I,(p) = A&p2)fiL , C,(p) = A2(p2)hL , (3.7) 

so there is no contribution from the second and third terms of Eq. (3.6). We need 

only consider Tr C3 which receives contributions from the one particle irreducible 

diagrams of Figs. 3-5. Fig. 3 is symmetric in the interchange of 6 and 6; Fig. 4 is 

symmetric in the interchange of a and y (for y, Z exchange there is a mass 

insertion m . a, for H exchange there is a coupling factor ma. These factor out of 

the definition of C3, leaving only a mass dependence (pi2 - mi2jS2 for each 

propagator, since the left projection operators in the W-couplings forbid any other 

mass insertions.) We are then left with the contribution of Fig. 5(a), which is 

expressed in terms of the one loop contribution to the vertex function, Fig. 6. 

Consider first Z and y exchange. If we define the vertex function of Fig. 

5(b) by iT 
P’ 

the self energy parts of Fig. 6 (Figs. 6(a) and (b)) give a contribution 

(for external catho-quarks) 

- 
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in a+b 
P = 

Ib+hy b+Y M2 
AI(sZ) S2 

D(s, n2) s2 - M 2 

(5 + rj2 (6+h b+ ix2Y 

+( s+r12-M 
2 AI [ (s + d21 

D(s, &?‘) 
Y,UL FUV(s -4) , (3.8) 

where A 1 is defined in Eq. (3.7); M is the relevant mass matrix and does not 

commute with Al; 

(3.9) D(s, M2) = [s2 - M21 [ (s + r)2 - M2 1 , 

FuJp) = iA,,Jp) = 
gp, - P gJmw2 

p2 - mW2 
(3.10) 

We want to extract the antihermitian part of To in order to get an imaginary 

- contribution to the trace. Hermitian conjugation of Eq. (3.8) gives for ($ a+b ‘t ) the 

same equation but with the replacement 

in the expression in brackets. Changingthe integration variable to s’ = -s - r, we 

obtain the expression (3.8) but now with F(s -4) replaced by F(s + q + r). Next 

consider the proper vertex parts of Fig. 6, Figs. 6(c) and (d), which we define by 

rp? We get a contribution: 

Y, ULF,,,.(s -4) , (3.11) 

where we have used the fact that the quark propagators are sandwiched between 

left projectors. Hermitian conjugation of Eq. (3.11) interchanges s and s + r in the 
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propagators. .Vaking the change of variables s’ = -s - r as before, we find that the 

antihermitian part, r -i;+. 
P P 

IS proportional to 

rp’b, r)F,Js -9) + rpcl)+ C-s - r, r)Fl “(s + r~ + q) . 

The proper vertex parts of Fig. 6 have the form: 

iricc) = 
P 

[@+k+t)y &+A) +M2y ] 

D(s + t, M2) 
’ y, Ut LFp$t] (3.12a) 

ir l(d) = -,d J & ’ + A) 0 2 
(2 n) 4 y~“(s + t12 

Utyu LFuo (t - r)Fv, (t) 

x { gm (2 - do - gop (t - 2dV - gTp (t + r) } (3.12b) 

Making the change of variables t’ = -t in Eq. (3.12a] and t’ = -t + r in Eq. (3.12b), the 

substitution s + -s - r and taking the hermitian conjugate, we find 

1 ir = -iT Cl]+ 
0 P , 

so that the antihermitian part of To is in all cases proportional to 

Fpv(s - q) - F,,“(s + r + q) 

= (2s + r) .(2q + r) (s - q&b - 4)” 

[(S-q)2-mw2][ (stq +r -mW 2l ( 
gpu- 

rnW2 > 

+ 
b ICh + r)J2q + r)” + (2q + r)u(2s + r)“] 

mW2 [(s+q+r)2-mw2] 
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By inspection of the required antisymmetrization of the propagators, the integral is 

finite after all W-propagators are removed. Then to lowest order in mWw2, the 

integrals (3.8) and (3.11) take the form (nonvanishing contributions from A1 and 

are order m -4 -2 
W and mW , respectively) 

iT = 
(2q + r) 

P 
mW6 

cx J ($ fop (s, r) = i(2q + r)oroo (r) . (3.14) 

Inserting this expression for rpinto the diagram of Fig. 5(a), we get an expression 

of the form: 

*!&d-g p!L 1 gs or iA (r2, mZ2) 
Y, 

mW (2n]4 r2 UP (r + d2 - M2 
(29 + darapW . (3.15 

After reduction of the y-matrices the integrand is necessarily a Lorentz scalar 

(terms like [b, q ] will vanish after r-integration] of the form: 

A03 = f(r2) . (3.16) 

But if we evaluate (3.16) on the mass shell of the external quark line q2 = M2, we 

have 

(r + q)’ - M2 = Zr-q + r2 

so that the external mass dependence disappears, and the result vanishes under 

antisymmetrization, so that we must retain higher order terms in 

(q-s, q-r, q 2 l/m w2 in Eq. (3.13). 

For Higgs exchange, the propagators appearing in the expressions analogous 

to (3.8) and (3.12) are linear rather than quadratic in momentum, and the result 

- 
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turns out to be proportional to the sum rather than the difference of the 

propagators in (3.13), so we do not gain any extra suppression factor. This is 

related to the CP property of the CqH vertex as we shall discuss in section 3.2. 

However there is an extra factor of mq2/mW2 from the Higgs coupling, so in the 

free quark model we get contributions 

3m 6 

00 / 
(Y) 

3 
A8 J- : J x 

mW 
(3 

(I-0 * 
(3.17) 

3.2. Strongly interacting quarks 

It is obvious that we can replace a photon line by a gluon line in the diagrams 

discussed in the preceding section (this would give a null result when the 

contributions of external ano- and catho-quarks are added if the dependence on 

m were the same as on m 
a+-f 696 

; it is not). This gives us a contribution 

*es($) ($ ($ . 

To the next order in strong interactions we can replace the free quark propagator 

by the dressed propagator 

giving a net q2- dependence although the pole factors both disappear if we normalize 

on mass shell. Then we get a contribution 
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AB2 x (>)‘(;)‘(zr . 

Finally, we need not exchange only a single gluon. The dashed line in Fig. 5 

can equally well represent a multigluon system. Let the black box in Figs. 5(b) and 

6 represent a vertex with external left-handed quarks and some external boson 

system. The vertex can be represented by an effective operator in momentum 

space: 

C@ (s, r) = $ c (s + r) y uQLb(s)Fu(Boson fields) . (3.15) 

A subtraction in the external W propagator in Fig. 5(b) will be necessary if 

O(s, r) : 0+(-s-r, r) 

For the quarks, this is equivalent to the CP operation which interchanges incoming 

and outgoing quarks. For single W-exchange, CP is a good symmetry of the vertex; 

then 

Ok., r) = +0+(-s - r, r) 

depending whether the boson system is even or odd under CP. For a single vector 

field: 

Fu= A 
w ’ 

CP =+I 

For a single Higgs scalar: 
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Fu=rPH ’ CP q -1 

(To lowest order in mWm2, the quark current operator is local and Fu does not 

depend on s.) For a two gluon system, we can construct C-even or -odd states. For 

a symmetric two-gluon system, F 
!J 

is identical to the quantity calculated 30 [see 

Eqs. A(8)-A(12) of Ref. 301 for theydyy vertex. It is CP even because of Furry’s 

theorem which allows only the axial part of the quark current to contribute, and 

because a symmetric digluon state is C-even. It may be that only the symmetric 

C-even part survives momentum integration. For three gluons, both the axial and 

vector parts of the quark current can contribute, and in either case we can form 

color singlet states which are C-even (F-couplings) or C-odd (D-couplings). Then 

we would expect to generate CP-odd vertices such as 

F,, = f.. T iF jF k k, 
yk vv VP PT 

i 

or 

dijkF uViFVp ‘Fpr kkT (3.19) 

where F i 
PV 

IS the gluon field tensor and k is some gluon momentum. From these 

diagrams we expect a contribution of at least 

A02 fl (2)’ ($2(%)4 * (3.20) 

When the expression (3.20) is put into the renormalization group equation (2.13) we 

find a contribution to 8, of order 

6,2 3 (2)” (3’ ($)’ * (3.21) 
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When integrated over u, this indicates that the us/” in equation (3.20) should be 

interpreted as rs/n (1 GeV) s I when we seek to evaluate the O(l GeV) which we 

need to calculate5 the neutron electric dipole moment. The quark mass factors in 

(3.21) must be O(ms2mc2), since the CP violation would vanish if any pair of quark 

masses were equal. The angle factors can be read off any 2 x 2 submatrix of the 

KM matrix.*l The resulting contribution to 8 is therefore 

2 2 
2 2 m m 

s1 s2s3 sin6 s c 

mw4 

zz 10-16 - (3.22) 

We remark in passing that similar considerations should hold for the purely 

perturbative contribution to the neutron dipole moment. We can construct a vertex 

function of the type 

FP=F ‘F .F’ kr 
PV VP Pr 

when F 
PV 

e is the electromagnetic field tensor and k the photon momentum. 

Setting k = 0 elsewhere in the diagram of Fig. 7 no longer symmetrizes the quark 

propagators as it did in the free quark case studied by Shabalin.25 There might also 

be a one gluon-one photon vertex, antisymmetric in gluon and photon variables (the 

symmetric part would be relatively reduced by one factor of mW -2), but in any case 

we expect a nonvanishing contribution of order 

t .r mu,d (>)2 (f)*( 2)’ s12s2s3 sin 6 . (3.23) 

In equation (3.23) the mass factors may be (mt2ms2)/mW4 or (mb2mc2)/mW4, 

resulting in a value for the neutron electric dipole moment O(mW2/mt2 or 
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mW2/mb2) larger than that estimated in ref. 22. We would therefore expect the 

purely perturbative contribution to electric dipole moment to be O(1O-28 to 10-29) 

cm. 

4. INFINITE CONTRIBUTIONS TO f3 RENORMALIZATION 

We now want to ascertain in what order of perturbation theory divergent 

contributions to the imaginary part of the mass matrix, and hence infinite 8 

renormalization, first occur. We remind the reader that such (logarithmic) 

divergences appear inevitable, since CP invariance is broken by Lagrangian terms 

of dimension 4 in the KM model, 21,22 so that CP is not violated softly. To locate 

divergent contributions to A0 it is convenient to use the manifestly renormalizable 

‘t Hooft-Feynman gauge. 27 The Feynman rules for quark-antiquark-boson couplings 

in this gauge are shown in Fig. 8. We see that the same phase-ridden KM coupling 

matrix U21 appears in the couplings of both the (transverse) Wt and the unphysical 

Higgs Q ‘. Note also that there are quark mass factors in the coupling of the e 
? 

and o”, 7”. To get some CP violation we need to exploit the differences in quark 

masses. To get divergent contributions to Al3 at most one of these quark mass 

factors may come from a mass insertion on a quark propagator, and the rest from 

the dimension 4 Lagrangian couplings in Fig. 8. As noted in section 2, we need at 

least four U or U’ matrices along the fermion line in order to get CP violation. To 

be in lowest feasible order, we will use only four such matrices. Also so as to be at 

the lowest feasible order, we can discard diagrams where the bosons emitted from 

the fermion line interact with each other. We are therefore led to contemplate 

diagrams where the fermion line is festooned with non-interacting bosons. The 

diagram will have a factor from the q-?i-boson vertices of the generic form 

“1 Urn= “2 “tm “3 Um “4 
a C 

(4.1) 
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and a logarithmic divergence which will be identical for diagrams of identical 

topology, but will in general differ for different topologies. 

It is easy to satisfy oneself using the Feynman rules of Fig. 8 that the powers 

nI...n4 in the generic expression (4.1) must all be even, and there will be a phase 

and hence CP violation only if they are all 2 2. The expression (4.1) will be 

symmetric, and hence no phase CP violation will arise,from any of the following 

low order combinations of the ni: 

n1 = n2 = n3 = n4 = 2 

n1 = 4, n2 = n3 = n4 = 2, and permutations thereof 

nl = n3 = 4, n 2 = n4 = 2 

I 
or n2 q n4 = 4, nl = n3 = 2 

The first combinations of the type (4.1) which might give a phase and hence CP 

violation are therefore 

Tr Utm 4 a Umc4 U+ma2 Umc2 

and 

Tr Utm 2Umc4Utm ‘Urn 2 a a c 

(4.3a) 

(4.3b) 

We see from (4.3) that the lowest order in which a phase is potentially available is 

12th order. To get a divergence in this order ail the quark mass factors in (4.3) 



-24- FERMILAB-Pub-78/66-THY 

would have to come from Higgs couplings, and there would be no vector boson 

couplings. But for every diagram on a cathoquark 29 line giving an expression of 

type (4.3a) there will be a diagram on an anoquark 29 line giving an expression of 

type (4.3b). When we add these together, the phases will cancel and there will be 

no CP violation. To get something non-zero, we need to add to twelfth-order dia- 

grams which yield expressions of the type (4.3) at least one U(1) boson line with at 

least one end on a right-handed fermion line so as to differentiate between ano- 

and cathoquarks. Therefore, the lowest order in which we may possibly find a 

logarithmically divergent contribution toe renormalization is the 14th. 

We should emphasize at this point that we cannot demonstrate that there is 

indeed a divergence in 14th order-this would require classifying and evaluating a 

very large number of diagrams of different topologies which would seem an 

impossible task. Instead, we will just look at the diagrams of one topological class 

which all have the same logarithmic divergence, and check whether their 

coefficients (4.3) sum to zero. Of course, even if the sum were non-zero, this 

would prove nothing since the logarithmic divergence in this class of diagrams 

could be cancelled by that in some other class. However, the presence of 

dimension 4 CP violation in the KM model leads us to believe that there will be a 

divergent contribution to A0 somewhere, and that this analysis at least establishes 

a lower bound on where it may arise. 

The generic topological class of fourteenth order diagrams we consider is 

indicated in Fig. 9. The ten diagrams of this type which have external cathoquark 

lines and the potentially CP violating coupling factors (4.3) are portrayed in Fig. 

10. Notice that we have included diagrams with the mirror image of the 

configuration of Fig. 9. The coupling factors for these diagrams are 
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(a), (d) } = - g k gL Tr Utma2 Umc4 Uima4 Umc2 1 (4.4a) 

- g ; gL Tr Ufm4Um4 + a cUma c *urn* 1 ’ (4.4b) 

It is clear from the different number of diagrams of types (4.4a) and (4.4b) that 

when we add to Fig. IO the corresponding diagrams with ano- and cathoquarks 

exchanged, there will be no cancellation of the logarithmic divergences because 

g k b gi. We conclude that in the ‘t Hooft-Feynman gauge 27 the generic diagrams 

illustrated in Fig. 9 give a net divergent contribution to Ae. 

How serious is this divergence. 7 It means that ‘3 is not specifiable, but we 

know already that in the KM model with one Higgs multiplet that there is no way of 

setting 8 = 0 unless we make an arbitrary assumption. If we regard 8 as an 

effective coupling constant,26 as discussed in section 2, this divergence can be 

renormaiized, for example by specifying that 0 = 0 when the theory is renormalized 

at some “relaxation” scale u o. Corresponding to this renormalization there is the 

renormalization group equation (2.12). The logarithmic divergence we have found 

makes an appearance in 

Be7 3 O( m’m~~f~m’)s~S2s3 sin6 

if we just have 6 quarks.’ Integrating this from the relaxation scale to the scale of 

order 1 GeV relevant to the neutron electric dipole moment, we find 

4 4 2 
mt “b ms mc 

2 
2 

12 s1 s2s3 sin 6 In (4.6) 
mW 

If we compare this with the first finite contribution (1.2): 
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A0 ” (t)‘.( k)’ s12s2.s3 sin 6 (4.7) 

we see that the residual finite renormalization after relaxation is less than the first 

truly finite piece (4.7) if (assuming 6 quarks, all with m ,210 W’ -I m )* 

In (&) < (:)-5(z )’ = 0(10’8) . (4.8) 

Hence the residual renormalization of 0 after relaxation is negligible if 

UO 
< exp (O(10f8))CeV (4.9) 

(or exp (O(lO’“)) CeV if there are quarks with masses SmW,2). If we conservatively 

assume that u. is less than the Planck mass, then the “infinite” contribution to 13 is 

less than 1O-32 if all quarks have masses (IO-’ mWJ’ We conclude that the 

“infinite”9 renormalization in the KM model is not very large. 

5. GENERAL REMARKS 

Having made detailed studies of the KM model, we would now like to make 

some remarks about other models, and assess the significance of our results. 

Weinberg 23 has proposed a model with > 3 Higgs doublets in which CP is 

violated by dimension 4 terms in the Higgs potential and there is no natural way of 

imposing 8 = 0. The predominant violation of CP is through Higgs exchanges which 

generate an effective milliweak qqqq interaction of strength 

sImAm m 
91 42 

x (generalized Cabibbo angles) (5.1) 

where m 
41 

and m 
92 

are generic quark masses, and 



-27- FERMILAB-Pub-78/66-THY 

Im A = O(CF/mH2) 

where m H is a generic Higgs boson mass. Application to the K”-i? system 

suggests that 

mm IhA Z 3x10A3 
s c GF (5.3) 

corresponding via equation (5.2) as m H = O(15) GeV. In this model, the dominant 

second order contribution to e renormalization comes from the diagram in Fig. II. 

It makes a contribution which is of order 

Ae2 x mq2mH2 Im Ax (generalized Cabibbo angle factors) . (5.4) 

There is no particular reason why the angle factors in (4.4) should be small, so from 

(5.2) we find 

A32 = CO(mq2GF) 
q 

where the summation sign indicates that contributions from all quarks must be 

added. Already one quark has a mass $5 GeV, and there is presumably at least one 

more with mass ‘7 GeV. We therefore believe that in the Weinberg 23 model 

Ae2 2 o(lo-3 to 10-4) (5.6) 

which is phenomenologically unacceptable by comparison with the neutron electric 

dipole moment. When we examine the fourth order diagram of Fig. 

12, we find a logarithmic divergence. The diagrams of Fig. I I are finite because of 

Z 
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an effective “subtraction” in the Higgs propagator. But the Weinberg multi-Higgs 

potential has sufficiently many degrees of freedom to allow the 3-Higgs vertex in 

Fig. 12 to destroy this delicate cancellation. This divergence is clearly more 

drastic than the 14th order divergence in the KhV model. 

GeorgiZ4 has proposed a model with 2 Higgs doublets in which CP is violated 

by “soft” dimension 2 terms in the Higgs potential. His model has the virtue that 

Aeis finite to all orders because of the softness of CP violation. This model has 

M = 2 Higgs exchanges which necessitate mH 2 (G, -“) to be no larger than the ob- 

served K”-i? mixing. On the other hand the multi-Higgs couplings become 

strongly interacting if mH > GF 4 . The model is therefore committedZ3 to 

m H = O(GF -“), and the probable dominance of Higgs exchanges in the AS = 2 K”-I? 

mixing, with aspersions therefore cast on the successful double W exchange 

calculation of the charmed quark mass. 3o CP violation arises from mass mixing A 

of the Higgs multiplets, which should be of order 

Afl10-3m 2 H (5.7) 

The second order 0 renormalization comes from Fig. 13 and is of order 

Ae2 2 ZA m 

q q 

’ GF/mH2 

= &O(10m3 mq2GF) 
q 

(5.8) 

By the same reasoning as before, the inclusion of top and bottom quarks suggests 

that (5.8) may imply 

Ae2 > o(lo-6 to 10-7) (5.9) 
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While not excluded, this renormalization is rather large compared with the 

phenomenological bound of 0 ( 10c8 deduced from the neutron electric dipole 

moment.4’5 

Since the problems we have been discussing involve the interplay between the 

strong, weak and electromagnetic interactions, it is natural to ask what happens to 

9 and its renormalization in grand unified models which seek to unify all these 

interactions. One such model is the SU(5) model of Ceorgi and Glashow, 28 which is 

the minimal theory containing QCD and the Weinberg-Salam model. 16 It can easily 

accommodate the KM model 21 of CP violation, with one Higgs 5-plet and “hard” 

symmetry breaking in the dimension 4 q;i-Higgs couplings. In this model it is most 

convenient to compute the renormalization of the argument of the determinant of 

the qy-H coupling matrix. This turns out to start being non-zero in fourth order, 

and possibly infinite in eighth order with a finite residual renormalization which is 

probably smaller than the fourth order contribution. The renormalization of 0 

therefore seems to be about the same in this model as in the KM version of the 

Weinberg-&lam model, though it should be studied more deeply. 

The analysis of this paper has certainly not revealed a totally satisfactory 

resolution of the problem of CP violation via the strong interaction 9 vacuum 

parameter when weak interaction effects are taken into account. The Georgiz4 

model has a second order renormalization of B which may be too large to be 

viable. The Kobayashi-Maskawa’l model is at an aesthetic disadvantage because 

of the need to set 9 = 0 arbitrarily at some “relaxation” scale u o. On the other 

hand, given this assumption the finite renormalization (1.2) of I3 is phenomeno- 

logically viable, and suggests a very small value for the neutron electric dipole 

moment. Clearly, more studies of possible patterns of CP violation in the 

SU(2) x U(1) Weinberg-Salam model are necessary, focussing in particular on the 

“relaxation” hypothesis and alternative Higgs structures. 
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Fig. 2: 
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Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

FIGURE CAPTIONS 

General form of O(a3) contributions to 6 renormalization in 

the Kobayashi-Maskawa mode121T22 with strong interactions 

neglected. 

Diagrams giving wave function renormalization in (a) 2nd 

order, and (b) fourth order. 

One particle irreducible diagrams contributing to C3, but not 

to Im Tr C3 because they are symmetric under f3 * 6. 

As for Fig. 3, except that they are symmetric under CL ++ y . 

Remaining 6th order contribution to C3, (a) showing its 

decomposition (b) into a vertex function. 

One loop contributions to the vertex function in Fig. 5b. 

A typical QCD correction to the photon vertex relevant to the 

neutron electric dipole moment. 

Relevant vertices for W*, Higgs and U(1) boson couplings in 

the manifestly renormalizable ‘t Hooft-Feynman gauge. 27 A 

common factor of 2’GFy2 has been removed from the Higgs 

couplings. 

Generic topology of a class of divergent CP violating 14th 

order diagrams in thekobayashi-Maskawa mode1.21y22 



Fig. 10: 

Fig. 11: 

Fig. 12: 

Fig. 13: 
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Diagrams in the class of Fig. 9 which cause infinite renormali- 

zation of 8. The quark charges and helicities are indicated 

explicitly only in figure (a). 

Lowest order diagram renormalizing rj in the Weinberg23 

model of CP violation. 

Divergent 4th order contribution to 0 renormalization in the 

Weinberg model of CP violation. 

Convergent second order contribution to 4 renormalization in 

the GeorgiZ4 model of CP violation. 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

FIGURE CAPTIONS 

General form of O(a3) contributions to 0 renormalization in 

the Kobayashi-Maskawa model 
21,22 with strong interactions 

neglected. 

Diagrams giving wave function renormalization in (a) 2nd 

order, and (b) fourth order. 

One particle irreducible diagrams contributing to C3, but not 

to Im Tr C3 because they are symmetric under 8 * 6. 

As for Fig. 3, except that they are symmetric under o. * y . 

Remaining 6th order contribution to C3, (a) showing its 

decomposition (b) into a vertex function. 

One loop contributions to the vertex function in Fig. 5b. 

A typical QCD correction to the photon vertex relevant to the 

neutron electric dipole moment. 

Relevant vertices for W’, Higgs and U(1) boson couplings in 

the manifestly renormalizable ‘t Hooft-Feynman gauge. 27 A 

common factor of 2’G ’ F has been removed from the Higgs 

couplings. 

Generic topology of a class of divergent CP violating 14th 

order diagrams in thexobayashi-Maskawa mode1.21122 
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Fig. 10: 

Fig. II: 

Fig. 12: 

Fig. 13: 

Diagrams in the class of Fig. 9 which cause infinite renormali- 

zation of 0. The quark charges and helicities are indicated 

explicitly only in figure (a). 

Lowest order diagram renormalizing 6 in the Weinbergz3 

model of CP violation. 

Divergent 4th order contribution to a renormalization in the 

Weinberg model of CP violation. 

Convergent second order contribution to @ renormalization in 

the GeorgiZ4 model of CP violation. 
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